El diseño de productos de IA difiere de los productos tradicionales en que debe proporcionar la funcionalidad y la experiencia de uso necesarias para que los usuarios puedan manejar los resultados inciertos y probabilísticos de la IA, les aporten transparencia y confianza, incorporen la realimentación y la mejora continua y proporcionen un comportamiento ético y cumplimiento normativo.

Seguimos analizando cómo difieren las actividades de desarrollo en productos basados en AI frente a los tradicionales.

Una vez realizada, al menos de una manera preliminar, la Definición de nuestro producto (y acotado y articulado el problema de mercado a resolver), Diseño de Producto se encarga de conceptualizar la solución a dicho problema, de formular y validar su propuesta de valor y de especificar el producto desde el punto de vista funcional y de experiencia de usuario.

Para ello aplica inicialmente un proceso divergente de generación de múltiples ideas de solución que posteriormente se someten a un proceso iterativo de prototipado y prueba para converger hacia una única solución adecuada en términos de deseabilidad, utilidad y usabilidad. Diseño elabora storyboards, diagramas de flujo, wireframes, prototipos y otros artefactos que se van iterando y validando con los clientes para asegurar que la solución es aceptable desde los puntos de vista funcional y experiencial.

Como resultado, Diseño elabora las especificaciones a partir de las cuales el equipo de Implementación construirá la solución real. Se trata de especificaciones funcionales y de experiencia de usuario -no de especificaciones técnicas- que describen cómo funciona el producto desde la perspectiva de comprador y usuario. Esta especificación puede tomar diversas formas: desde el tradicional Documento de Especificaciones de Producto hasta un prototipo “de alta fidelidad” anotado con historias de uso.

Las diferencias más importantes entre productos de IA y tradicionales en el área de Diseño de producto son:

  • Ideación. La fase de ideación hace hincapié en la identificación de soluciones que puedan implementarse específicamente utilizando capacidades de IA, como el análisis predictivo, la automatización o la personalización. Los diseñadores deben valorar la viabilidad del uso de la IA evaluando la disponibilidad de datos, las posibilidades algorítmicas y las limitaciones técnicas. Esto aboga por una involucración temprana del equipo de Implementación (ingeniería) en esta fase.
  • Manejo de la incertidumbre y los resultados probabilísticos. La IA suele proporcionar resultados probabilísticos que conllevan incertidumbre. El diseño en IA requiere el diseño de interfaces que puedan comunicar estas incertidumbres de forma eficaz, por ejemplo, mostrando los niveles de confianza o utilizando señales visuales para indicar la variabilidad de las predicciones. Los usuarios deben ser conscientes de que los resultados de la IA pueden no ser precisos al 100% y cambiar con el tiempo.
  • Educar a los usuarios sobre las capacidades y limitaciones de la IA. Los diseñadores deben informar a los usuarios de lo que la IA puede y no puede hacer, así como de las limitaciones de sus datos o algoritmos. Los esfuerzos del diseño a menudo implican procesos de onboarding, información sobre herramientas o señales visuales que informan a los usuarios sobre los puntos fuertes y débiles de la IA y los contextos en los que podría ser menos fiable.
  • Satisfacer las necesidades de los usuarios en materia de transparencia en la toma de decisiones. Los usuarios a menudo necesitan entender cómo la IA llega a sus conclusiones, especialmente en contextos de alto riesgo como la sanidad, las finanzas o la selección de personal. Esto hace que el diseño se centre en la transparencia y la capacidad de explicación. Los product managers y los diseñadores pueden tener que crear funciones que permitan a los usuarios ver las puntuaciones de confianza, las razones de las predicciones de la IA u otros datos sobre el «pensamiento» de la IA.
  • Crear confianza en las predicciones de la IA. La creación de confianza es una parte fundamental del diseño para la IA, ya que los usuarios pueden desconfiar de las recomendaciones o decisiones basadas en la IA. Los diseñadores deben crear interfaces y experiencias que ayuden a los usuarios a confiar en la precisión y fiabilidad de la IA, sobre todo para aplicaciones en ámbitos delicados.
  • Realimentación iterativa del usuario y mejora del rendimiento. Dado que los modelos de IA suelen entrenarse y mejorarse con los datos de los usuarios, la recopilación de sus opiniones es fundamental para la optimización continua. El diseño para la IA implica la creación de mecanismos para recabar opiniones que puedan mejorar directamente el rendimiento, la precisión o la relevancia del modelo a lo largo del tiempo, alimentando la lógica central del producto en tiempo real.
  • Pruebas contextuales y validación de usuario. El diseño para la IA requiere pruebas de usuario rigurosas para comprender cómo interactúan los usuarios con los resultados probabilísticos y el comportamiento impredecible. Las pruebas pueden incluir el examen de la tolerancia de los usuarios a la incertidumbre, su comprensión de las explicaciones proporcionadas y su comodidad a la hora de tomar decisiones basadas en las sugerencias de la IA.
  • Diseño para un uso ético y justo de la IA. La IA a veces puede reforzar los prejuicios, por lo que el diseño debe incluir consideraciones de equidad e inclusión. Esto puede significar diseñar con transparencia las fuentes de datos, permitir a los usuarios señalar resultados sesgados y posibilitar la revisión o auditoría de las decisiones de la IA. El diseño ético es fundamental para generar confianza y reducir los daños, especialmente en aplicaciones que afectan a la vida de las personas.
  • Adaptación continua de la UX a los cambios de modelo. Los modelos de IA pueden evolucionar con el tiempo a medida que se reentrenan con nuevos datos, lo que puede cambiar el comportamiento o el rendimiento del sistema. El diseño centrado en el usuario para la IA implica el diseño de interfaces adaptables que puedan dar cabida a cambios en la funcionalidad o el comportamiento debidos a actualizaciones del modelo, y puede ser necesario informar a los usuarios de estos cambios.
  • Requisitos reglamentarios y de conformidad. El cumplimiento de la normativa suele ser más complejo, sobre todo en sectores con directrices estrictas sobre el uso de datos, la transparencia y la imparcialidad (por ejemplo, sanidad, finanzas y seguros). El diseño debe incorporar una comprensión de cómo afectan las normativas a la recopilación de datos, el procesamiento y el despliegue de modelos, especialmente si el producto afecta a áreas personales o sensibles de la vida de los usuarios.
  • Prototipos y experimentación. Los anteriores puntos amplían el ámbito y la dificultad de las tareas de diseño de productos basados en AI y expanden el alcance de las actividades de prototipado y experimentación, claves en esta fase.

Muy importante: riesgo de Usabilidad

La experiencia del cliente es importante para cualquier producto, pero con la IA adquiere un nuevo nivel de importancia y complejidad. Para los productos de IA, necesitamos diseñar experiencias de usuario que establezcan claramente las expectativas sobre lo que la tecnología puede y no puede hacer y, al menos conceptualmente, cómo funciona el producto. Esta transparencia es clave para generar confianza y evitar la frustración al encontrar limitaciones. La explicabilidad de la IA es un componente clave de esta transparencia y confianza.

En el próximo post cubriremos las actividades de implementación  de productos de IA vs. tradicionales.

El post “Productos basados en IA vs. tradicionales: diseño de producto” se publicó primero en “Marketing & Innovación”.

[¿Quieres aprender a aplicar estas ideas en tu empresa? Nuestros talleres sobre Product Management de productos tecnológicos y Product Marketing de productos tecnológicos te pueden ayudar.]